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Abstract 

Background and Aim The impact of trace elements and heavy metals on human health has attracted widespread 
attention. However, the correlation between urinary chromium concentrations and blood pressure remains unclear 
and inadequately reported, and the aim of this study was to investigate the relationship between urinary chromium 
concentrations and blood pressure in adults in the United States (US).

Methods We utilized data from the National Health and Nutrition Examination Survey (NHANES) 2017–2018 for this 
study. Multivariate logistic regression and multivariate linear regression were used to explore the association of urinary 
chromium concentrations with hypertension and blood pressure. Additionally, we also performed subgroup analysis 
and restricted cubic splines (RCS).

Results A total of 2958 participants were enrolled in this study. The overall mean systolic blood pressure and dias-
tolic blood pressure were 123.98 ± 0.60, 72.66 ± 0.57 mmHg, respectively. The prevalence of hypertension was found 
in 41.31% of the whole participants. In the fully adjusted model, we did not observe a correlation between urinary 
chromium concentrations and the risk of hypertension and systolic blood pressure. However, we found a nega-
tive association between urinary chromium concentrations and diastolic blood pressure. In subgroup analysis, we 
observed a positive association between urinary chromium and the risk of hypertension among participants older 
than 60 years of age and those who were Non-Hispanic Black. The interaction term highlighted the influence of age 
and race on this positive association. We also found a negative association of urinary chromium with diastolic blood 
pressure in male, participants who were current smokers, overweight, and other races, as well as those without alco-
hol use and anti-hypertensive drug use. However, the interaction term only revealed the influence of alcohol con-
sumption on the negative association.

Conclusion Our study suggested that urinary chromium concentrations may show a negative association with dias-
tolic blood pressure and this association was significantly dependent on alcohol consumption. Besides, a positive 
association between urinary chromium and the risk of hypertension was also found among participants older 
than 60 years of age and those who were Non-Hispanic Black.
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Introduction
Chromium holds significance as a vital trace element for 
human health; nevertheless, the precise workings of its 
impact on the human body remain not entirely elucidated 
[1]. Simultaneously, chromium emerges as a potentially 
hazardous heavy metal, ranking among the prevalent 
environmental contaminants, notably prevalent in indus-
trial settings such as tanneries [2]. The elevated chro-
mium concentrations in water and soil, resulting from a 
spectrum of both natural and human-induced activities, 
have sparked considerable concern regarding the envi-
ronmental ramifications of chromium pollution [3, 4].

The escalating prevalence of hypertension has ele-
vated it to a pressing public health concern. Further-
more, hypertension stands as a pivotal risk factor for a 
spectrum of ailments, including coronary heart disease, 
heart failure, and stroke [5, 6]. A cross-sectional study 
has brought to light an independent association between 
serum chromium levels and hypertension [7]. Lower 
plasma chromium levels have been linked to hyperglyce-
mia, hyperinsulinemia, hypertension, and insulin resist-
ance [8]. Intriguingly, a meta-analysis contradicts these 
findings by revealing that chromium supplementation 
significantly diminishes both systolic and diastolic blood 
pressure [9]. Conversely, another meta-analysis indicates 
that chromium supplementation doesn’t notably alter 
systolic blood pressure, with no discernible correlation 
between blood pressure levels and the dose or duration 
of chromium supplementation [10].

The relationship between long-term chromium expo-
sure and hypertension is contradictory. A study focused 
on preschool children proposed a negative associa-
tion between chromium and barium exposure and both 
blood pressure and hypertension [11]. However, another 
study indicated that residing in regions with heightened 
chromium and arsenic exposure was correlated with an 
increased risk of hypertension [12]. Currently, the associ-
ation between chromium concentrations and blood pres-
sure in the noninstitutionalized general population in the 
US has yet to be explored. In this study, we attempted to 
investigate the relationships between urinary chromium 
and blood pressure, in a nationally representative sample 
of US adults.

Materials and methods
Study population
We sourced our data from NHANES, a cross-sectional 
study with the objective of evaluating the health and 
nutrition status of the U.S. population, administered by 
the National Center for Health Statistics (NCHS) of the 
U.S. Center for Disease Control and Prevention (CDC). 
All NHANES data were publicly available at https:// 
www. cdc. gov/ nchs/ nhanes/. The NHANES survey was 

a national research program conducted in a 2-year 
repeated cycle with continuously updated survey data. 
The NHANES study design used a complex stratified, 
multistage probability sampling method to assess the 
health and nutrition status of the U.S. population, ensur-
ing a degree of representativeness in participant recruit-
ment. The Research Ethics Review Committee of NCHS 
approved all NHANES study protocols and obtained 
written informed consent from all survey participants 
or parents and/or legal guardians of participants under 
16 years of age.

Our study used data from NHANES 2017–2018, as 
this is the only survey cycle that included both urinary 
chromium and blood pressure data. Our study initially 
included 9254 participants and after excluding partici-
pants younger than 18  years (n = 3398), lack of data on 
urine chromium (n = 4057) and lack of data on hyperten-
sion, systolic blood pressure, diastolic blood pressure, 
and use of anti-hypertensive medication (n = 65), 1734 
participants were eventually included in our final analysis 
(Fig. 1).

Exposure and outcome definitions
The urinary chromium concentrations were designed 
as an exposure variable. The reason for choosing urine 
chromium as an exposure variable is that urinary chro-
mium levels can reflect not only recent exposure but also 
the cumulative effects of long-term chromium intake. 
The chromium, upon absorption, tends to accumulate in 
various tissues over time. This stored chromium is gradu-
ally released into circulation and eventually excreted 
in urine [13, 14]. The half-life of chromium in serum is 
40  months, while the half-life of chromium in urine is 
129 months [15, 16]. The random (or spot) urine samples 
were collected from the participants after confirming the 
absence of background contamination in the collection 
material. Measurement of urinary chromium levels was 
conducted using inductively coupled plasma mass spec-
trometry (ICP-MS), a multi-element analytical technique 
capable of incorporating dynamic reaction cell tech-
niques (DRC) for trace element analysis. This method 
achieved rapid and accurate quantification of urinary 
chromium. Urine samples were processed, stored, and 
shipped to the Division of Laboratory Sciences, National 
Center for Environmental Health, Centers for Disease 
Control and Prevention, Atlanta, GA for analysis. Upon 
receipt, urine samples were stored at ≤ -20  °C until they 
were dispatched to the National Center for Environmen-
tal Health for testing.

Hypertension, systolic, and diastolic blood pressure 
were designed as outcome variables. After 5  min of 
quiet rest and after determining the participant’s max-
imum inflation level (MIL), three consecutive blood 

https://www.cdc.gov/nchs/nhanes/
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pressure (BP) readings were obtained. If BP meas-
urements were interrupted or incomplete, a fourth 
attempt could be made. All BP measurements (systolic 
and diastolic) were performed at the Mobile Examina-
tion Center (MEC).

Exclusion criteria for participants encompassed 
specific conditions on both arms, such as rash, gauze 
dressing, plaster, edema, paralysis, tubal, open ulcer or 
wound, arm blight, arteriovenous shunt, and mastec-
tomy. BP measurements predominantly took place in 
the right arm unless particular conditions prohibited 
its use or the participant cited reasons against meas-
uring in the right arm. Each participant underwent 
1–4 BP readings during the study, with those lacking 
any BP readings being excluded. If they had only one 
BP reading, then this was the final record. For par-
ticipants with multiple BP readings, the initial reading 
was consistently excluded, and the BP record repre-
sented the average of subsequent readings. Hyperten-
sion was defined based on a self-reported diagnosis 
of hypertension, diastolic blood pressure ≥ 90  mmHg 
or systolic blood pressure ≥ 140  mmHg, or the use of 
antihypertensive medications [17].

Covariates
Covariates included in this study encompassed age, sex, 
race, education level, the ratio of family income to pov-
erty (PIR), body mass index (BMI), serum calcium, serum 
phosphorus, serum creatinine, serum uric acid, urine 
albumin to creatinine ratio (uACR), estimated glomeru-
lar filtration rate (eGFR), total cholesterol, urinary lead, 
urinary cadmium, alcohol consumption, smoking sta-
tus, diabetes mellitus (DM), and use of anti-hyperten-
sive medications. BMI was classified as < 25, 25–29.9, 
and ≥ 30  kg/m2, which corresponded to normal weight, 
overweight, and obese population for all participants. 
DM was defined based on a self-reported diagnosis of 
diabetes mellitus, 2-h plasma glucose ≥ 200  mg/dL in 
an oral glucose tolerance test, HbAlc ≥ 6.5%, use of oral 
hypoglycemic agents, or fasting glucose ≥ 126 mg/dL [18]. 
All detailed measurement processes of study variables 
were publicly available at www. cdc. gov/ nchs/ nhanes/.

Statistical analysis
All analysis was performed using R version 4.2.1 (http:// 
www.R- proje ct. org, The R Foundation). All statisti-
cal analysis was conducted in accordance with CDC 

Fig. 1 Flowchart of the sample selection from the 2017–2018 National Health and Nutrition Examination Survey (NHANES)

http://www.cdc.gov/nchs/nhanes/
http://www.R-project.org
http://www.R-project.org
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guidelines and appropriate NHANES sampling weights 
were applied, which illustrated the complex multi-stage 
cluster survey design in the analysis. Continuous varia-
bles were presented as mean with standard deviation and 
categorical variables were presented as percentages. The 
comparison between groups based on urinary chromium 
concentrations (tertiles) employed a weighted Student’s 
t-test for continuous variables and a weighted chi-square 
test for categorical variables. Multivariate logistic regres-
sion models were used to explore the independent rela-
tionship between urinary chromium and the risk of 
hypertension in three different models. Multivariable 
linear regression models were also performed to explore 
the independent association of urinary chromium with 
systolic blood pressure and diastolic blood pressure after 
adjusting for potential confounding factors. No covari-
ates were adjusted for in Model 1, and in Model 2, age, 
sex, and race were adjusted. In Model 3, adjustments 
were made for age, sex, race, education levels, PIR, BMI, 
serum phosphorus, serum creatinine, serum uric acid, 
eGFR, uACR, total cholesterol, urinary lead, urinary cad-
mium, alcohol consumption, smoking status, DM, and 
use of anti-hypertensive medications. Subgroup analyses 
stratified by age (< 60/ >  = 60), sex (male/female), race 
(Mexican American/Non-Hispanic White/Non-Hispanic 
Black/Other races), BMI (normal weight/overweight/
obesity), diabetes (yes/no), alcohol consumption (yes/
no), smoking status (never/former/now), and use of anti-
hypertensive medications (yes/no) were also performed 
by stratified multiple regression analysis. In addition, an 
interaction term was added to test the heterogeneity of 
associations between the subgroups. To further investi-
gate the association between urinary chromium concen-
trations and diastolic blood pressure, restricted cubic 
splines (RCS) with 3 knots at the 10th, 50th, and 90th 
percentiles were performed.

Results
Baseline characteristics of the enrolled participants
Table 1 illustrates the population characteristics and covar-
iates, presenting the weighted distribution of included par-
ticipants based on urinary chromium tertiles. A total of 
1734 subjects, with a mean age of 47.64 ± 0.99 years were 
recruited in our study, of which 48.82% were males and 
51.18% were females. The ranges of urinary chromium 
concentrations tertiles were <  = 0.13, 0.13–0.22. 0.22–
41.79ug/L, respectively. The overall mean systolic blood 
pressure and diastolic blood pressure were 123.98 ± 0.60, 
and 72.66 ± 0.57  mmHg, respectively. The prevalence of 
hypertension was found in 41.31% of the whole partici-
pants. Among different urinary chromium concentrations 
tertiles, we found significant differences in age, serum 

creatine, eGFR, serum phosphorus, systolic blood pressure, 
diastolic blood pressure, and DM. No significant difference 
was observed in serum calcium, total cholesterol, serum 
uric acid, uACR, sex, race, PIR, education levels, BMI, 
alcohol consumption, smoking status, and hypertension. 
Participants in the highest tertile exhibited an older age, a 
higher likelihood of diabetes, higher urinary lead and uri-
nary cadmium, elevated serum creatinine, and serum phos-
phorus, increased systolic blood pressure, decreased eGFR, 
and lower diastolic blood pressure compared to those in 
the lowest tertile of urinary chromium concentrations.

The association between urinary chromium concentrations 
and hypertension
For unadjusted analyses (Model 1), urinary chromium 
concentrations were not associated with the risk of hyper-
tension (OR: 1.20, 95%CI: 0.80–1.81, p = 0.35). After 
adjusting for potential confounders (Model 2 and Model 
3), urinary chromium remained unassociated with the risk 
of hypertension (Model 2: OR: 1.03, 95%CI: 0.91–1.17, 
p = 0.56. Model 3: OR: 1.09, 95%CI: 0.94–1.26, p = 0.23).

To further assess the association between urinary 
chromium concentration and the risk of hypertension, 
we converted urinary chromium concentration from a 
continuous variable to a categorical variable (tertiles). 
The analysis revealed no significant correlation between 
urinary chromium concentration and the risk of hyper-
tension. The unadjusted OR of the risk of hypertension 
for tertile 22 vs tertile 1 was 1.39 (95%CI: 0.866–2.52, 
p = 0.85). The fully adjusted OR of the risk of hyperten-
sion for tertile 3 vs tertile 1 was 1.08 (95%CI: 0.46–2.25, 
p = 0.17) (Table 2).

The association between urinary chromium concentrations 
and systolic blood pressure
No correlation was observed between urinary chromium 
concentration and systolic blood pressure in the unad-
justed Model 1 and in Model 2, which was adjusted for 
age, sex, and race. In the fully adjusted Model 3, we found 
that each unit increase in urinary chromium concentra-
tion was associated with a 0.05  mmHg decrease in sys-
tolic blood pressure, although this difference was not 
statistically significant.

When we converted urinary chromium concentra-
tion from a continuous variable to a categorical variable, 
in the unadjusted model (Model 1), we found that the β 
(95% CI) of the systolic blood pressure for tertile 3 vs ter-
tile 1 was 2.75 (95% CI: 0.63–4.86). In the fully adjusted 
model (Model 3), participants in the highest tertile exhib-
ited a 1.54  mmHg increase in systolic blood pressure 
compared with those in the lowest tertile of urinary chro-
mium concentration, although this difference did not 
reach statistical significance (Table 3).



Page 5 of 14Liang et al. BMC Cardiovascular Disorders          (2024) 24:248  

Table 1 Baseline characteristics of the study population

eGFR Estimated glomerular filtration rate, uACR  Urine albumin to creatinine ratio, PIR Ratio of family income to poverty, BMI Body mass index

Urinary chromium All participants Q1
(< = 0.13)

Q2 (0.13–0.22) Q3 (0.22–41.79) P value

Age (year) 47.64 (0.99) 45.91 (1.16) 47.43 (1.59) 51.22 (1.16) 0.004
Serum calcium (mmol/L) 2.33 (0.01) 2.33 (0.01) 2.33 (0.01) 2.33 (0.01) 0.96

Serum creatinine (mg/dl) 0.88 (0.01) 0.86 (0.01) 0.85 (0.03) 0.93 (0.02) 0.04
eGFR (ml/ min/l.73 m^2) 94.55 (1.05) 96.36 (1.33) 96.45 (1.34) 90.37 (1.49) 0.003
Total cholesterol (mmol/L) 4.83 (0.05) 4.89 (0.07) 4.86 (0.12) 4.72 (0.06) 0.1

Serum uric acid (umol/L) 320.52 (3.21) 316.86 (5.16) 316.81 (9.96) 328.90 (4.30) 0.28

Serum phosphorus (mmol/L) 1.15 (0.01) 1.14 (0.01) 1.13 (0.01) 1.18 (0.01) 0.01
uACR (mg/g) 41.51 (6.35) 34.48 (6.30) 53.05 (32.09) 52.93 (19.01) 0.63

Urinary lead (ug/L) 0.42 (0.02) 0.33 (0.02) 0.57 (0.02) 0.59 (0.09)  < 0.0001
Urinary cadmium (ug/L) 0.28 (0.01) 0.22 (0.01) 0.36 (0.05) 0.57 (0.02)  < 0.0001
Systolic blood pressure (mmHg) 123.98 (0.60) 122.85 (0.74) 126.69 (2.76) 125.60 (0.64) 0.04
Diastolic blood pressure (mmHg) 72.66 (0.57) 72.88 (0.70) 75.53 (1.41) 71.48 (0.66) 0.02
Sex (%) 0.75

 Female 51.18 (0.02) 52.07 (3.00) 52.20 (5.69) 49.10 (3.52)

 Male 48.82 (0.02) 47.93 (3.00) 47.80 (5.69) 50.90 (3.52)

Races (%) 0.73

 Mexican American 9.92 (0.02) 10.74 (2.05) 9.89 (2.94) 8.26 (2.42)

 Non-Hispanic Black 11.18 (0.01) 9.40 (1.39) 11.95 (2.34) 14.63 (1.88)

 Non-Hispanic White 61.53 (0.04) 60.39 (3.43) 62.97 (7.58) 63.51 (3.07)

 Others 17.36 (0.02) 19.48 (2.13) 15.19 (5.67) 13.60 (1.89)

PIR (%) 0.3

  < 1 12.03 (0.01) 13.25 (1.68) 17.92 (5.72) 13.19 (1.69)

 1–4 43.38 (0.03) 47.54 (2.85) 58.99 (8.37) 49.43 (4.02)

  > 4 33.22 (0.03) 39.21 (3.20) 23.08 (5.71) 37.37 (5.03)

Educational levels (%) 0.73

 Less than 9th grade 3.45 (0.01) 3.30 (0.61) 3.53 (1.49) 3.73 (0.78)

 9-11th grade 8.29 (0.01) 6.93 (1.23) 12.78 (2.50) 9.91 (1.42)

 High school graduate 31.48 (0.02) 31.56 (2.82) 30.81 (7.46) 31.49 (3.79)

 Some college or AA degree 28.53 (0.02) 28.95 (2.19) 26.61 (4.80) 28.17 (3.18)

 College graduate or above 28.25 (0.03) 29.25 (3.48) 26.26 (5.82) 26.70 (4.56)

BMI (%) 0.19

 Normal weight 25.06 (0.02) 26.18 (2.73) 17.48 (5.91) 25.31 (2.46)

 Overweight 29.71 (0.02) 32.05 (2.17) 20.66 (5.35) 27.96 (2.54)

 Obesity 44.49 (0.02) 41.77 (2.81) 61.86 (10.42) 46.73 (2.82)

Smoke (%) 0.39

 Never 58.36 (0.03) 57.43 (3.38) 62.31 (3.99) 59.23 (2.84)

 Former 26.11 (0.02) 25.78 (3.10) 29.26 (3.80) 25.98 (3.40)

 Now 15.54 (0.02) 16.79 (1.72) 8.44 (2.77) 14.80 (1.37)

Alcohol user (%) 0.64

 Yes 79.84 (0.03) 80.46 (1.42) 81.46 (4.64) 78.16 (2.03)

 No 20.16 (0.01) 19.54 (1.42) 18.54 (4.64) 21.84 (2.03)

 DM (%) 15.10 (0.01) 12.56 (1.54) 26.88 (5.89) 17.27 (2.15) 0.01
 Anti-hypertensive drug (%) 4.53 (0.01) 4.65 (0.90) 2.15 (0.69) 4.90 (1.29) 0.2

 Hypertension (%) 41.31 (0.03) 38.21 (3.81) 49.74 (7.83) 45.49 (3.63) 0.19
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The association between urinary chromium concentrations 
and diastolic blood pressure
For unadjusted analyses (Model 1), urinary chromium 
concentrations were not associated with diastolic blood 
pressure. In Model 2, we observed a negative association 
between urinary chromium concentrations and diastolic 
blood pressure (β:-0.61, 95%CI:-1.16 ~ -0.06, p = 0.03). 
This inverse association persisted in the fully adjusted 
model (Model 3), where urinary chromium concentra-
tions were associated with a decrease in diastolic blood 
pressure (β:-0.53, 95%CI:-0.93 ~ -0.14, p = 0.01).

We converted urine chromium concentrations from 
continuous variable to categorical variables, and in the 
fully adjusted model (Model 3), we observed a decrease 
in diastolic blood pressure of 1.20 mmHg with each unit 
increase in urine chromium concentrations, though this 
difference was not statistically significant (Table 4).

To further explore the correlation between urinary 
chromium concentrations and diastolic blood pres-
sure, we performed an RCS analysis to explore whether 
there was a nonlinear relationship between the two. Our 
results showed a J-shaped nonlinear correlation between 
urine chromium concentrations and diastolic blood pres-
sure (P nonlinear = 0.026), indicating a decreasing trend 

in diastolic blood pressure with increasing urine chro-
mium concentrations (Fig. 2).

Subgroup analysis
To delve deeper into the factors influencing the relation-
ship between urinary chromium concentrations and 
hypertension, as well as systolic and diastolic blood pres-
sure, a stratified analysis was conducted based on sex, 
age, race, BMI, diabetes status, alcohol consumption, 
smoking status, and use of anti-hypertensive medica-
tions. For the correlation between urinary chromium 
concentrations and hypertension, we observed a posi-
tive association among participants older than 60  years 
of age. An increase in urinary chromium concentration 
per unit correlated with a substantial 485.1% increased 
risk of hypertension in participants older than 60  years 
compared with their younger counterparts. A positive 
association between urinary chromium and the risk of 
hypertension was also found in subjects who were Non-
Hispanic Black. The interaction term highlighted the 
influence of age (P for interaction = 0.004) and race (P for 
interaction = 0.002) on the association between urinary 
chromium concentrations and hypertension (Fig.  3). In 
contrast, no significant differences were suggested by the 

Table 2 Multivariate logistic regression models of hypertension with Urinary chromium

Model 1: No covariates were adjusted

Model 2: Age, sex and race were adjusted

Model 3:Age, sex, race, education levels, RIP, BMI, serum phosphorus, serum creatinine, serum uric acid, eGFR, uACR, total cholesterol, urinary lead, urinary cadimum, 
alcohol consumption, smoking status, DM, and use of anti-hypertensive medications were adjusted

Hypertension OR (95%CI)

Model 1 Model 2 Model 3

Continuous 1.20 (0.80, 1.81), p = 0.35 1.03 (0.91, 1.17), p = 0.56 1.09 (0.94, 1.26), p = 0.23

Categories

Tertile 1 Reference Reference Reference

Tertile 2 1.60 (0.74, 3.44), p = 0.21 1.61 (0.59, 4.41), p = 0.31 1.39 (0.86, 2.52), p = 0.85

Tertile 3 1.35 (0.89, 2.06), p = 0.15 0.96 (0.58, 1.60), p = 0.87 1.08 (0.46, 2.25), p = 0.17

Table 3 The association between systolic blood pressure and urinary chromium

Model 1: No covariates were adjusted

Model 2: Age, gender, and race were adjusted

Model 3:Age, sex, race, education levels, RIP, BMI, serum phosphorus, serum creatinine, serum uric acid, eGFR, uACR, total cholesterol, urinary lead, urinary cadimum, 
alcohol consumption, smoking status, DM, and use of anti-hypertensive medications were adjusted

Systolic blood pressure β (95%CI)

Model 1 Model 2 Model 3

Continuous 0.5 (-0.44, 1.44), p = 0.27 -0.24 (-0.91, 0.42), p = 0.43 -0.05 (-0.64, 0.54), p = 0.88

Categories

Tertile 1 Reference Reference Reference

Tertile 2 3.84 (-2.07, 9.75), p = 0.18 3.04 (-2.81, 8.88), p = 0.27 2.19 (-3.60, 7.97), p = 0.43

Tertile 3 2.75 (0.63, 4.86), p = 0.01 -0.01 (-2.06, 2.03), p = 0.98 1.54 (-0.34, 3.42), p = 0.10
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interaction test in the association between urinary chro-
mium concentrations and systolic blood pressure across 
various stratifications. This indicates that there was no 
substantial dependence on stratified factors in the asso-
ciation between urinary chromium concentrations and 
systolic blood pressure (Fig. 4).

A negative association of urinary chromium with dias-
tolic blood pressure was observed in males (β = -0.613), 
participants who were current smokers (β = -0.637), over-
weight (β = -0.504), and other races (β = -0.503), as well as 
those without alcohol use (β = -0.841) and anti-hyperten-
sive drug use (β = -0.472). The interaction term revealed 

the influence of alcohol consumption on the association 
between urinary chromium concentrations and diastolic 
blood pressure (P for interaction = 0.024) (Fig.  5). This 
suggests a significant dependence of alcohol consump-
tion on the negative association between urinary chro-
mium concentrations and diastolic blood pressure.

Discussion
In this observational study that recruited 1734 sub-
jects, we found no significant association between uri-
nary chromium concentrations and risk of hypertension 
or systolic blood pressure. Besides, we also observed a 

Table 4 The association between diastolic blood pressure and urinary chromium

Model 1: No covariates were adjusted

Model 2: Age, gender, and race were adjusted

Model 3:Age, sex, race, education levels, RIP, BMI, serum phosphorus, serum creatinine, serum uric acid, eGFR, uACR, total cholesterol, urinary lead, urinary cadimum, 
alcohol consumption, smoking status, DM, and use of anti-hypertensive medications were adjusted

Diastolic blood pressure β (95%CI)

Model 1 Model 2 Model 3

Continuous -0.49 (-1.07, 0.10), p = 0.10 -0.61 (-1.16, -0.06), p = 0.03 -0.53 ( -0.93, -0.14), p = 0.01
Categories

Quartile 1 Reference Reference Reference

Quartile 2 2.64 (-0.44, 5.73), p = 0.09 2.58 (-0.66, 5.81), p = 0.10 2.41 (-0.63, 5.44), p = 0.11

Quartile 3 -1.4 (-3.32, 0.52), p = 0.14 -1.79 (-3.93, 0.35), p = 0.09 -1.20 (-2.86, 0.46), p = 0.15

Fig. 2 Restricted cubic spline (RCS) plot of the association between urinary chromuim concentrations and diastolic blood pressure. RSC plot 
of the association between urinary chromium concentrations and diastolic blood pressure (P nonlinear = 0.026)
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Fig. 3 Subgropup analysis for the association between urinary chromium and Hypertension

Fig. 4 Subgroup analysis for the association between urinary chromium and systolic blood pressure
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negative association between urinary chromium con-
centrations and diastolic blood pressure. In subgroup 
analysis, our results suggested that urinary chromium 
concentrations may be associated with an increased 
risk of hypertension in individuals over 60  years of age. 
Furthermore, the negative association between urinary 
chromium concentrations and diastolic blood pressure 
appears to depend on alcohol consumption.

Chromium, an essential mineral for life, has been 
implicated in potentially exerting an inhibitory effect on 
insulin resistance. This effect may be attributed to the 
induction of increased levels of glucose-6-phosphatase 
and phosphoenolpyruvate carboxykinase 1 mRNA 
expression, contributing to the improvement of sys-
temic insulin sensitivity [19]. Notably, research by Hung 
A. et  al. suggested that chromium supplementation 
could enhance insulin signaling and muscle mass. This 
improvement might be linked to an increase in lipoca-
lin in subcutaneous adipose tissue and a decrease in the 
expression of suppressor of cytokine signaling 3 (SOCS3) 
in skeletal muscle [20]. An animal study also found that a 
diet low in chromium may lead to weight gain, systemic 
fat accumulation, and elevated fasting triglyceride lev-
els [21]. Basaki M et  al. found significantly lower levels 
of serum zinc, copper, and chromium in type 2 diabetes 
[22]. A meta-analysis found a beneficial effect of chro-
mium supplementation on glycemic control in diabetic 
patients, with both chromium monotherapy and the 

combination being associated with a significant reduc-
tion in HbA1c levels [23]. Additionally, this analysis 
reported a decrease in triglyceride levels with chromium 
supplementation, and importantly, it did not identify an 
increased risk of adverse events [23]. However, a sepa-
rate study focusing on patients with polycystic ovary 
syndrome found no significant effect of chromium sup-
plementation on fasting insulin and quantitative insulin 
sensitivity check indices [24].

Various studies have highlighted the association 
between urinary chromium concentrations and cardio-
vascular diseases, underscoring the potential impact of 
chromium on cardiovascular health. Chen et  al. found 
that in male participants, low chromium levels were 
associated with increased odds of developing cardiovas-
cular disease and diabetes [25]. Meng et al. identified a 
negative association between blood chromium levels 
and atherogenic cardiovascular disease [26]. Chromium 
concentrations in hair were found to be negatively cor-
related with the risk of myocardial infarction episodes. 
The study also noted a 24.7% decrease in chromium con-
centrations in the hair of individuals who succumbed to 
a third myocardial infarction episode compared to those 
who tolerated such an episode [27]. The mechanisms 
underlying chromium’s potential reduction of cardio-
vascular disease risk may involve its ability to decrease 
the expression levels of inflammatory biomarkers asso-
ciated with these risk factors. Notably, high-sensitivity 

Fig. 5 Subgroup analysis for the association between urinary chromium and diastolic blood pressure
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C-reactive protein and tumor necrosis factor-alpha 
(TNF-α) have been implicated [28]. Additionally, chro-
mium acts as an antioxidant, contributing to a reduction 
in malondialdehyde levels, mitigating lipid peroxidation, 
and regulating NF-kB activity to alleviate inflammatory 
responses [29, 30].

One study found that chromium supplementation sig-
nificantly reduced both systolic and diastolic blood pres-
sure, and the reduction in systolic blood pressure was 
greater in participants given chromium yeast [9]. An 
investigation into the effects of micronutrients on hyper-
tensive patients in rural China suggested independent 
associations between serum concentrations of copper, 
selenium, and chromium with hypertension. Men with 
hypertension exhibited a significant decrease in serum 
chromium concentrations [7]. In contrast, a study involv-
ing male adolescents found no correlation between uri-
nary chromium levels and hypertension [31].

The exact mechanism by which chromium influences 
blood pressure remains unclear. However, chromium 
supplementation has been associated with improve-
ments in total antioxidant capacity and oxidative stress 
parameters, such as malondialdehyde. In animal models, 
chromium has been observed to facilitate insulin sign-
aling and uphold glucose equilibrium by ameliorating 
endoplasmic reticulum stress [32]. Moreover, chromium 
demonstrates the ability to mitigate lipid accumulation 
through the reduction of triglyceride synthesis and the 
promotion of adipose tissue breakdown [33]. Addition-
ally, chromium can impede adipogenesis by modulating 
the expression of the sterol regulatory element bind-
ing protein 1 (SREBP-1) gene [34]. Studies have indi-
cated that chromium may decrease lipid peroxidation 
in mice by hindering carbon tetrachloride production 
[35]. Chromium could also reduce reactive oxygen spe-
cies (ROS) and TNF-α, inhibit the expression of NF-kB, 
and decrease the expression of vascular cell adhesion 
molecule 1 (VCAM-1), thereby improving endothelial 
dysfunction [36]. Chromium also activates the cellular 
energy sensor 5’AMP-activated protein kinase (AMPK), 
which inhibits the activation of the NF-kB signaling path-
way and the expression of inflammatory cytokines [37]. 
These anti-inflammatory and antioxidant properties may 
contribute to the regulation of blood pressure.

In hypertensive patients, significant elevations in pro-
inflammatory cytokines, such as interleukin (IL)-18 and 
IL-1β, have been detected [38, 39]. Animal studies sug-
gested that downregulation of MAPK and NF-kB path-
ways, which caused vascular inflammation, could lead to 
vasodilation and improve hypertension [40]. Addition-
ally, C-reactive protein, a potent inflammatory marker 
associated with hypertension risk, exhibits higher levels 
in hypertensive and prehypertensive patients compared 

to those with normal blood pressure [41, 42]. In a study 
involving patients with coronary artery disease, chro-
mium significantly reduced serum levels of high-sensi-
tivity C-reactive protein [43]. Moreover, a meta-analysis 
revealed that chromium reduces the levels of inflamma-
tory biomarkers such as IL-6 and TNF-α, which are major 
risk factors for hypertension and cardiovascular disease 
[44]. Chromium intake has been shown to improve blood 
pressure in hypertensive subjects, potentially associ-
ated with decreased renin-angiotensin system activity, 
reduced angiotensin-converting enzyme activity, and 
diminished NO activity due to inadequate bioavailabil-
ity [45–48]. Additionally, chromium down-regulates the 
expression of Hypoxia-inducible factor 1α (HIF-1α) and 
up-regulates Peroxisome proliferator activated receptor 
α (PPARα) [49]. Activation of HIF-1α alters mitochon-
drial respiratory function and metabolism and affects 
organismal redox homeostasis, while PPARα activation 
is linked to the regulation of fatty acid metabolism, fatty 
acid oxidative catabolism, and inflammatory mechanisms 
[50–52]. These mechanisms related to oxidative stress 
and inflammation play a significant role in influencing 
the progression of hypertension.

The outcomes of our subgroup analyses indicate that 
the relationship between urinary chromium and hyper-
tension may be influenced by racial factors. Among 
Non-Hispanic Black participants, we observed a posi-
tive correlation between urinary chromium and hyper-
tension. Research proved that black adults exhibited 
the highest prevalence of hypertension among all racial 
groups in the United States [53]. Even in the pediatric 
population, the incidence of hypertension remains ele-
vated in Blacks compared to Whites [54]. An examina-
tion of hypertension control rates in the U.S. populace 
revealed lower rates in Non-Hispanic Black individuals 
compared to their Non-Hispanic White counterparts 
[55]. Moreover, Non-Hispanic Blacks diagnosed with 
hypertension early in life face a substantially height-
ened risk of end-stage renal disease and cardiovascular 
death compared to Non-Hispanic Whites [56]. Racial 
disparities in blood pressure control may stem from 
lower insurance coverage and limited access to health-
care. A study uncovered significantly lower adherence to 
hypertension medications among patients in areas lack-
ing routine healthcare facilities, resulting in diminished 
blood pressure control rates [57]. Another study high-
lighted that lack of insurance rates were approximately 
6% higher in Non-Hispanic Blacks than in Non-Hispanic 
Whites [58]. Prior research has highlighted the presence 
of racial variations in vascular function. Healthy black 
women may manifest impaired microvascular function, 
as indicated by a diminished hemodynamic response to 
flow-mediated dilation compared to their healthy white 
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counterparts [59]. Young black men exhibit greater 
carotid intima-media thickness, stiffer carotid arteries, 
reduced resistance arteriolar dilation, diminished total 
forearm congestive blood flow, and elevated central blood 
pressure in comparison to young white men [60]. A piv-
otal process in the progression of hypertension involves 
vascular inflammation, leading to the release of various 
pro-inflammatory cytokines that activate endothelial and 
vascular smooth muscle cells [61, 62]. A study identified 
lower blood glutathione and oxidized glutathione lev-
els in black adults compared to their white counterparts 
[63]. Additionally, black adults displayed higher baseline 
levels of circulating C-reactive protein than whites [64]. 
In a study examining oxidative stress and inflammatory 
markers in cell culture, human umbilical vein endothe-
lial cells from the black population demonstrated lower 
superoxide dismutase activity and higher levels of inter-
leukin 6 [65]. This evidence elucidated why black peo-
ple tend to exhibit greater oxidative stress and vascular 
inflammation.

Age also played a significant role in the correlation 
between urinary chromium and the risk of hypertension. 
Among participants aged 60 and above, higher urinary 
chromium concentrations were linked to an increased 
risk of hypertension. The prevalence of hypertension 
rised with age, reaching up to 74% in individuals over 
80 years old [66]. Aging is intricately linked to structural 
and functional alterations in the arterial vascular system, 
encompassing both large and small arteries. For instance, 
aging contributes to a thickening of the arterial lining and 
a notable increase in the diameter of the arterial lumen in 
the elderly [67]. This expansion may result in repetitive 
stretching of elastic arteries, leading to the fatigue of elas-
tin and eventual breakage [68, 69]. Consequently, arterial 
elasticity decreases, compromising the cushioning func-
tion of the arteries. This phenomenon allows the pulse 
wave to propagate faster, ultimately elevating systolic 
blood pressure levels [70]. As time progresses, pressure 
accumulation in the vessel wall induces overproliferation 
and phenotypic conversion of smooth muscle cells, cul-
minating in the accumulation of extracellular matrix and 
endothelial dysfunction [71–73]. This intricate process 
is further associated with an imbalance in the release of 
vasoconstrictors and vasodilators.

The results of our subgroup analysis reveal a note-
worthy negative correlation between urinary chromium 
concentration and diastolic blood pressure, and this cor-
relation appears to be significantly influenced by alco-
hol consumption. Specifically, in non-drinkers, elevated 
urinary chromium concentrations are associated with a 
more pronounced reduction in diastolic blood pressure. 
Research by Roerecke M et  al. indicates that any alco-
hol consumption increases the risk of hypertension in 

men. In women, the risk of hypertension is not increased 
at 1–2 drinks per day but is elevated with consumption 
exceeding 1–2 drinks [74]. Jung et  al. further observed 
that in Asian men, even low doses of alcohol (0.01 to 
20.0  g/day) led to an increased risk of hypertension. In 
Western men, only the high-dose alcohol group (> 60.0 g/
day) showed a significantly increased risk of hypertension 
[75]. Chronic alcohol consumption has been associated 
with increased urinary levels of 20-hydroxyeicosatetrae-
noic acid (20-HETE), acting as a vasoconstrictor and 
pro-inflammatory mediator. This activation of the NF-kB 
pathway in endothelial cells induces the expression of the 
pro-inflammatory cytokine IL-8, leading to endothelial 
injury [76, 77]. A randomized controlled trial has also 
confirmed the impact of alcohol consumption on mark-
ers of endothelial function, including E-selectin and 
endothelin-1 [78].

There are several strengths of our study. First, this study 
was based on data from NHANES, a nationally representa-
tive sample of population-based data obtained through the 
use of a standardized protocol, and all analyses took into 
account appropriate NHANES sampling weights. We also 
adjusted for confounding covariates to ensure the robust-
ness of the results. The cross-sectional design inherently 
limits the ability to establish causal relationships, highlight-
ing the need for future large prospective cohort studies to 
delve deeper into causation. Despite adjusting for potential 
covariates, the possibility of residual confounding remains, 
as the effects of all potential confounders may not have 
been completely eliminated. Furthermore, the study’s par-
ticipants were drawn from one country, potentially affect-
ing the generalizability of the findings to a global context. 
We did not assess whether chromium deficiency has an 
effect on the incidence of hypertension in this study, the 
development of which is determined by a combination of 
multiple risk factors such as dietary habits, obesity, family 
history, metabolic syndrome, etc., and we were unable to 
analyze the effect of chromium deficiency on hypertension 
due to the lack of data on daily dietary chromium intake 
in the NHANES database. This consideration emphasizes 
the importance of cautious interpretation and encourages 
future research to validate and expand upon these find-
ings. Last but not least, despite its limitations, NHANES 
has become a valuable resource for longitudinal assess-
ment of the clinical epidemiology of hypertension in the 
US population.

Conclusion
In our current study, we observed no significant correlation 
between urinary chromium concentration and hyperten-
sion or systolic blood pressure. However, a notable negative 
correlation was identified between urinary chromium con-
centration and diastolic blood pressure. Subgroup analysis 
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results indicated a potential association between urinary 
chromium concentration and an elevated risk of hyper-
tension in individuals aged over 60 and those who were 
Non-Hispanic Black. Furthermore, the negative correla-
tion between urinary chromium concentration and dias-
tolic blood pressure appeared to be influenced by alcohol 
consumption. It is important to emphasize that while these 
findings provide valuable insights, further validation is war-
ranted through large-scale prospective studies.
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